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Abstract

The reliability of automated essay scoring
(AES) is largely dependent on the size and
quality of the training data used to build the
models. This paper explores several methods
for reducing the size of the required training
data while increasing the reliability of the pre-
dictions. In particular, we explore whether un-
supervised methods for selecting a training set
from a large pool of unscored essays can lead to
more reliable predictions on a holdout set than
simply sampling with random selection. We
also compare two active learning strategies,
but focus our attention on fully unsupervised
methods because of the operational difficulties
of using active learning in the context of au-
tomated essay scoring. Our results show that
maximum-minimum distance selection, an un-
supervised method, can significantly improve
prediction quality on some data sets. However,
further research and development is needed to
find a generalizable solution.

I. Introduction

In order to score essay-writing test items
with automated scoring solutions, most
existing engines rely on a training set of

human-scored student responses. The relia-
bility of the AES model is dependent on the
quality of the training data, in terms of both
the accuracy of the human scoring and the cov-
erage of the answer space. In particular, it is
important that the training set approximates
the distribution of the various score points in
the testing population and provides a represen-
tative sample of the ways those score points
can be achieved. Obtaining a training set with

these characteristics is a challenge given that
the scores are not known at the time the train-
ing set is chosen to be hand scored. This chal-
lenge is often solved by randomly selecting a
larger training set than is truly needed by the
scoring engine. However, hand-scoring a set
of responses to use as a training set is an ex-
pensive and time-consuming element of AES.
Reducing the required size of the training set
offers a potential reduction in the operational
cost of AES and increases the affordability of
AES for test items with small test populations.

A motivating example for this research may
be illustrative. We consider the case of a client
who wishes to use automated scoring to score
responses to an essay item delivered via an
online platform. A common scenario is one in
which the client has a large collection of un-
scored responses (e.g. responses from an essay
item on an end-of-grade test). Scoring all of
these responses by hand is either cost- or time-
prohibitive, so the client wishes to hand score
a small subset of the responses to be used as a
training set for the automated scoring engine.
The AES engine can then score the remainder
of the responses in a timely and cost-effective
manner. Common practice dictates that we
would randomly select the training set to be
hand scored from the unscored responses. In
order to maximize the accuracy of the auto-
mated scores, a large training set is desired.
However, to minimize cost and time, it would
be beneficial to reduce the number of responses
that require hand scoring.

The question of how many human-scored
responses are needed in a training set to build
a reliable AES model can be restated as follows:
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How many randomly sampled responses does
it take to achieve sufficient coverage of the an-
swer space? Past research has suggested a
wide range of possible training set sizes, from
100 (Landauer, et al., 2003) to 1,800 (Shermis &
Hamner, 2013). This paper explores the use of
alternative sampling methods when construct-
ing the training set for an AES model in order
to reduce the number of hand-scored responses
needed, while still maintaining high reliability.

The focus of this paper is on unsupervised
methods of selecting the training set to be
hand scored from a large pool of unscored
essays. That is, we use information extracted
from the essays themselves, with no knowl-
edge of the scores a human would give, in
order to select the optimal training set. In ad-
dition, we include some shallow exploration
of active learning to select training sets. The
machine learning community has done a con-
siderable amount of research into active learn-
ing, a group of algorithms that iteratively select
larger training sets based on the hand-scoring
information from smaller sets (Cohn, Atlas
& Radner, 1994), (Freund, Seung, Shamir, &
Tishby, 1997), and (Settles, 2010). This pro-
cess can be repeated multiple times and of-
ten achieves a much better result than sim-
ple random selection. However, the iterative
hand-score/train/predict/select cycle requires
technological flexibility from the hand-scoring
system that may be difficult for the hand-
scoring vendor to provide. A fully unsuper-
vised method, if it is approximately as effective
as active learning, would be preferable.

The data for this study comes from the
Automated Student Assessment Prize, Phase
One (ASAP) data.1 Three source-dependent
prompts were selected: essay items 3, 5, and 6.
Table 1 gives further details about the prompts.
For each prompt, we combine the training, vali-
dation, and test sets into a single group and use
the final human scores for the model building
and evaluation process.

Table 1: ASAP Prompts

ID Grade # of Responses Rubric

3 10 2858 0-3
5 8 3006 0-4
6 10 3000 0-4

We use LightSide, an open-source AES en-
gine developed originally at Carnegie-Mellon
University and now maintained by LightSide
Labs, to do all of the feature extraction, model
building, and prediction work in this pa-
per. LightSide is provided for free (open
source GPLv3 license) as a desktop tool for
researchers.2

II. Methods

I. Experimental Design

In order to measure whether a sampling
method can improve upon random selection,
we use the method to select training sets of 100,
200, 300, 400, 500, and 600 essays. Each train-
ing set is used to build a LightSide model and
predict scores on a hold-out set of 30% of the es-
says (approximately 1,000 responses), selected
at random. The quality of a given training set
is measured by the quadratic weighted kappa
of the predictions that a model built from the
training set gives on the hold-out set. The hold-
out set is constant across training set sizes and
sampling methods so that a valid comparison
can be made. To control for randomization
in the selection algorithms, this process is re-
peated 5 times at each training set size, and to
control for randomization in the hold-out set
selection, the entire experiment is run 3 times
on each data set. Because this data has already
been hand-scored, when selecting the training
sets we explicitly ignore the human-assigned
scores in order to mimic the motivating exam-
ple described in the introduction. The steps of
the experiment are described in Algorithm 1.
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for each prompt do
for each of 3 runs do

holdout = 30% of the essays
available = other 70% of essays
for each selection method do

for each of 5 trials do
for m = 100 through 600 do

select m from available
build a model
predict on holdout

end
end

end
end

end
Algorithm 1: Experiment

Once all trials are performed (1890 tri-
als in total), we analyze the data in two
ways. First, for each prompt, we calculate
the quadratic weighted kappa difference be-
tween each method and random selection at
each training set size, averaging across all 5
trials in all 3 runs (15 trials per method per
training set size). Those differences are given
in Tables 3, 4, and 5, with statistical signif-
icance from a two-tailed T test indicated at
p < 0.05, p < 0.01, and p < 0.001.

We also attempt to estimate how many train-
ing set essays would be needed when sampled
under the various strategies in order to achieve
a quadratic weighted kappa equivalent to ran-
dom selection. To estimate this data, we fit
logarithmic curves of the form given in Equa-
tion 1 to the scores from the 15 trials at each
size for all seven sampling methods. In this
equation, y is the quadratic weighted kappa
for the trial, x is the training set size, and the
variables a, b, c, and d are fit to the data using a
non-linear least squares curve fitting approach
(Levenberg, 1944). Using the random selec-
tion curves for each prompt, we estimate the
expected quadratic weighted kappa for a train-
ing set of 600 essays. We then use the curves

for the other sampling methods to determine
how many training essays would be needed
to achieve an equivalent quadratic weighted
kappa. These estimates are given in Table 2.

y = a(ln(b(x− c))) + d (1)

II. Sampling Methods

The sampling methods under comparison are:
• Random Selection
• Stratified Selection on Length
• K-Means Center/Border Selection
• Maximum-Minimum Distance Selection
• Active Learning

Random Selection
Random selection of the available data is the
industry standard and is presented here as the
baseline selection strategy.

Stratified Selection on Length
Motivation: We want our training set to have
a representative distribution of all of the
score points. Essay length tends to have a
strong correlation with human-assigned scores
(Breland, Bonner, & Kubota, 1995), so we use
length of the essay as a proxy for score and
perform stratified selection.

Description: To select m essays from the
available pool with this sampling method we
sort the essays by length, divide the list into m
equally sized bins, and select a random essay
from each bin.

K-Means Center/Border Selection
Motivation: The AES engine needs data points
that are most representative of the various
score points, as well as data points that help
it find the dividing hyperplane between the
score points. We begin with the assumption
that we can cluster the data into groups
that resemble the score point groupings
by clustering on the features alone. If this
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assumption holds, selecting from the center of
the clusters would approximate finding the
essays that are most representative of the score
points, and selecting from the borders between
the clusters would approximate finding essays
that help define the dividing hyperplane.

Description: K-means is an unsupervised
clustering algorithm that groups a data set
based on how close each essay is to the centers
of a proposed set of clusters. These clusters are
generated by considering the essays as points
in an n-dimensional feature space, where n is
equal to the number of features measured on
each essay, and trying to minimize the variance
of the clustering. Center/border selection is an
algorithm that selects evenly from those essays
that are close to the center of the clusters and
those essays that are on the border between
two or more clusters (Lughofer, 2012).

K-means is an efficient clustering algo-
rithm, but does not work well when used on
high-dimensional data (Sun, Wang, & Fang,
2012). LightSide generates boolean features
indicating the presence or absence of word,
character, and part of speech n-grams, which
number into the tens of thousands. To reduce
these to a usable number, we first transform
them via tf-idf into real valued features and
then reduce them to 10 principal components
using Randomized PCA, which has been
shown to be a convenient transformation for
the k-means algorithm (Ding & He, 2004).
Once each essay has been transformed, we use
k-means clustering to group the essays into
k clusters, where k is the number of possible
score points for that data set. We then attempt
to select 50% of the training set from the
center of the clusters, spread evenly across
the clusters, and 50% of the training set from
regions between clusters.

Maximum-Minimum Distance Selection
Motivation: Assuming that the extracted fea-
tures properly describe the essays, we want

to select a sample such that as much of the
described feature space as possible is covered.
Maximum-minimum distance (MMD) selection
is an algorithm that ensures the selected es-
says are all as far from one another as possible
in the feature space for a given distance met-
ric. The result of this sampling strategy is that
the selected set is spread evenly over the n-
dimensional feature space that describes the
data points. Figures 1a and 1b illustrate the dif-
ference between MMD selection and random
selection, using a Euclidean distance metric
(Equation 2) on two dimensions from the Iris
data set.3

d(p, q) =

√
n

∑
i=1

(pi − qi)2 (2)

Description: MMD (Algorithm 2) is an iterative
algorithm that selects a set of data points such
that the distance from each selected point to
its nearest neighbor in the selected set is maxi-
mized. MMD begins by selecting m points at
random (where m is the desired sample size).
It then considers each selected point, and if
there is an unselected point such that the dis-
tance between the unselected point and the
unselected point’s nearest neighbor in the se-
lected set is greater than the distance between
the selected point and its nearest neighbor in
the selected set, the currently selected point is
replaced with the unselected point.4 The algo-
rithm repeats this process for every selected
point until convergence is reached when no
points are updated. As proof that this algo-
rithm converges, we define St, the selected set
after t updates have been made, and Dt (Equa-
tion 3), the sum of the distances between all
points in St. Note that Dt+1 > Dt for all t.
Since Dt is monotonically increasing and there
are a finite set of points to select from, the al-
gorithm must eventually converge. Of course,
this is only true if d(p, q) is a proper distance
metric. In particular, d(p, q) must satisfy the
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(a) Random Selection (b) Maximum-Minimum Distance Selection

Figure 1: Random selection vs. Maximum-Minimum Distance selection on two dimensions of the Iris data set

triangle inequality.

Dt = ∑
p∈St

∑
q∈St

d(p, q) (3)

We examine MMD with two distance metrics:
Jaccard distance (Equation 4) on the set of
boolean features extracted by the LightSide
engine and Euclidean distance (Equation 2) on
those same features after applying tf-idf.

d(p, q) = 1−

n
∑

i=1
pi ∧ qi

n
∑

i=1
pi ∨ qi

(4)

Input: A, m
Output: The m most distant points

Let S = {x0, x1, ..., xm | x ∈ A}
done = False
while not done do

done = True
for p in S do

S′ = S \ p
i = argmax

i∈N\S′
argmin

j∈S′
d(i, j)

S = S′ ∪ i
if i 6= p then

done = False
end

end
end
return S

Algorithm 2: Maximum-minimum distance
selection algorithm for selecting m points
from a set A

Active Learning
Motivation: For any given training set, an
automated scoring system will have more
information about some essay types and
less information, or potentially confusing
information, about others. If we are able to
identify those essays for which the automated
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scoring engine has the least amount of infor-
mation, then we could be sure to add those
essays to the training set to be hand-scored.
Active learning is a broad category of machine
learning algorithms that iteratively selects
more data with which to train, based on
information gathered from training on a
smaller set and predicting on the remainder
of unscored data from which it is selecting.
Settles (2010) provides an overview of many of
the common methods for active learning.

Description: In this experiment, after training
a model on 100 randomly selected responses,
the active learning algorithm predicts on both
the hold-out set and the responses not selected
in the first batch of 100. The sampling strategy
then selects an additional 100 responses from
that remainder set, based on some heuristic
over the predictions, to include (with the
original 100) in the m = 200 training set. We
compare two common strategies for active
learning: confidence and committee. The
active learning by confidence algorithm selects
those data points for which it is least certain
about its predictions. The LightSide engine
is powered by a naive Bayes classifier, which
outputs a probability distribution over the
possible scores for each essay. The predicted
score is the one with the highest probability.
At each step, we take the 100 essays with
the lowest probability given for the predicted
score. Active learning by committee, on the
other hand, uses multiple models to predict on
each essay and selects those essays for which
the predictions differ the most. We use a
logistic regression model to compare with the
naive Bayes model and select the 100 essays
with the greatest difference between the two
predictions at each step.

III. Results

No particular sampling method outperformed
random selection on all three prompts. How-

ever, several methods were able to reduce the
average training set size by up to 45% on some
of the prompts (Table 2). Stratified selection
on length was approximately equal to random
selection on all three prompts (Figure 2), as
was active learning by committee (Figure 5).
K-means center/border selection and MMD
selection with both distance metrics outper-
formed random selection on prompts 3 and
6, but underperformed random selection on
prompt 5 (Figures 3 and 4). Finally, active learn-
ing by confidence was approximately equal to
random selection on prompts 3 and 5, but out-
performed random selection on prompt 6 (Fig-
ure 5). Further study is needed to understand
why certain prompts were amenable to these
training set reduction strategies, while others
were not.

I. Prompt 3

On prompt 3, MMD selection with Jaccard dis-
tance and MMD selection with Euclidean dis-
tance outperformed random selection when
training set sizes were m ≥ 300 essays, show-
ing an increase in average quadratic weighted
kappa of 0.015 to 0.027 (Table 3). The expected
reduction in training set size would be 36%
for MMD with Jaccard distance and 37% for
MMD with Euclidean distance (Table 2). K-
means center/border selection showed slight
improvement over random at m = 200, as did
active learning by confidence (∆qwk of 0.011
and 0.014, respectively). Stratified selection
on length and active learning by committee
showed no difference with respect to random
selection.

II. Prompt 5

On prompt 5, k-means center/border selection
and MMD selection with either distance metric
performed worse than random selection at all
training set sizes, showing up to a 0.012 to 0.082
drop in average quadratic weighted kappa (Ta-
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Table 2: Expected training set size to achieve a quadratic weighted kappa equivalent to that of 600 randomly selected
essays. "n/a" indicates that the expected size is larger than 600 (no reduction).

Prompt 3 Prompt 5 Prompt 6
Stratified on Length n/a 593 577
K-means 591 n/a 497
MMD Jaccard 386 n/a 429
MMD Euclidean 376 n/a 399
Active Confidence n/a 531 331
Active Committee n/a 518 454

Table 3: Prompt 3: Mean quadratic weighted kappa difference between sampling method and random selection at six
training set sizes, averaged over 15 trials. (two-sample t-test, *p<.05, **p<.01, ***p<.001)

100 200 300 400 500 600
Stratified on Length 0.003 0.004 0.005 0.002 −0.005 −0.005
K-means −0.010 0.011∗∗ −0.002 0.004 0.006∗ 0.000
MMD Jaccard −0.011 −0.006 0.026∗∗∗ 0.026∗∗∗ 0.016∗∗∗ 0.015∗∗∗

MMD Euclidean 0.004 0.000 0.019∗∗∗ 0.027∗∗∗ 0.022∗∗∗ 0.020∗∗∗

Active Confidence −0.007 0.014∗ 0.006 0.001 0.004 0.000
Active Committee 0.009 0.006 0.003 0.003 −0.003 −0.005

ble 4. Active learning by confidence and ac-
tive learning by committee showed slight in-
creases at m = 600 (∆qwk of 0.006 and 0.007 re-
spectively), while stratified selection on length
showed no difference with respect to random
sampling. The expected reduction of training
set size with the active methods would be 12%
to 14% (Table 2).

III. Prompt 6

On prompt 6, active learning by confidence
outperformed random selection when training
set sizes were m ≥ 300 essays, showing an in-
crease in average quadratic weighted kappa of
0.017 to 0.021 (Table 5). MMD selection with
Jaccard distance was worse than random selec-
tion on small training set sizes (when m = 100,
∆qwk = −0.080), but steadily rose until it
began outperforming random selection when
m ≥ 400, eventually reaching ∆qwk = 0.022
when m ≥ 500. MMD selection with Euclidean
distance showed similar performance, with less

dramatic drops in average quadratic weighted
kappa when m ≤ 200 (∆qwk of −0.026 to
−0.033), and higher gains in average quadratic
weighted kappa when m ≥ 400 (∆qwk of 0.016
to 0.023). K-means center/border selection
showed erratic performance, with lower aver-
age quadratic weighted kappa when m ≤ 200
(∆qwk of−0.030 to−0.048), no difference when
m = 300, 400, or 600, and slight increase when
m = 500 (∆qwk = 0.009). Stratified selec-
tion on length and active learning by commit-
tee showed no significant improvement. On
prompt 6, however, all methods showed an ex-
pected reduction in training set size, from strat-
ified selection on length (4%) to active learning
with confidence (45%).

IV. Discussion

The ultimate goal of the exploration in this
paper was to find an unsupervised method
for selecting data that could reduce the re-
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Table 4: Prompt 5: Mean quadratic weighted kappa difference between sampling method and random selection at six
training set sizes, averaged over 15 trials. (two-sample t-test, *p<.05, **p<.01, ***p<.001)

100 200 300 400 500 600
Stratified on Length −0.004 0.001 −0.003 −0.002 −0.003 0.005
K-means −0.127∗∗∗ −0.073∗∗∗ −0.070∗∗∗ −0.053∗∗∗ −0.041∗∗∗ −0.012∗∗

MMD Jaccard −0.073∗∗∗ −0.070∗∗∗ −0.052∗∗∗ −0.048∗∗∗ −0.026∗∗∗ −0.013∗∗∗

MMD Euclidean −0.082∗∗∗ −0.058∗∗∗ −0.062∗∗∗ −0.056∗∗∗ −0.031∗∗∗ −0.018∗∗∗

Active Confidence −0.010 0.004 0.002 0.002 0.001 0.006∗

Active Committee 0.000 −0.010 −0.001 0.000 0.002 0.007∗

Table 5: Prompt 6: Mean quadratic weighted kappa difference between sampling method and random selection at six
training set sizes, averaged over 15 trials. (two-sample t-test, *p<.05, **p<.01, ***p<.001)

100 200 300 400 500 600
Stratified on Length 0.006 0.000 −0.007 −0.003 0.002 0.002
K-means −0.030∗∗∗ −0.048∗∗∗ 0.005 0.005 0.009∗ −0.005
MMD Jaccard −0.080∗∗∗ −0.054∗∗∗ −0.022∗∗ 0.013∗∗ 0.022∗∗∗ 0.022∗∗∗

MMD Euclidean −0.026∗∗ −0.033∗∗∗ 0.000 0.016∗∗ 0.022∗∗∗ 0.023∗∗∗

Active Confidence 0.008 −0.001 0.017∗∗∗ 0.017∗∗∗ 0.020∗∗∗ 0.021∗∗∗

Active Committee 0.000 −0.006 0.002 0.007 0.009 0.005

quired training set size in comparison to ran-
dom selection. On prompts 3 and 5, MMD
selection with a Euclidean distance metric was
able to reduce the size of the training set by
37% and 34%, respectively, indicating that this
algorithm may be an appropriate method to
use. However, this method’s poor performance
on prompt 5 shows that more research needs
to be done to understand the limitations of
the algorithm. An interesting thing to note is
that MMD tended to underperform random
selection when training set sizes were very
small (m ≤ 200) and then rapidly climb in per-
formance as training set sizes increased (Fig-
ure 4). This is likely due to the effect of outliers,
which tend to be selected more often than in-
liers with this algorithm when the selection
size is much smaller than the available pool
of unscored essays. A possible improvement
to this algorithm would be to include a means
of reducing the number of outliers in the se-
lected set. One promising aspect of this algo-

rithm is that it appears to be unaffected by the
curse of dimensionality, and is able to identify
a strong training set even though the distances
are computed between points in a very high-
dimensional space. Further research is needed
to understand how this algorithm behaves on
low-dimensional data.

As noted in the results, stratified selection
on length showed no improvement over ran-
dom sampling. This is likely because, even
though length does correlate with score, length
is a poor proxy for score. Even if we had a
good proxy for score (e.g. scores from a model
trained on similar data or ability metrics for
the student from other sources), we suspect
that this algorithm would still not perform as
well as MMD. Having a good representation
of each score point is important, but it does
not necessarily give you a sufficient coverage
of the answer or feature space.

In contrast, k-means center/border selection,
which also showed little noticeable improve-
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ment over random selection, would benefit
from more informative features (i.e. features
that served as better proxies for the score). The
features generated by the LightSide engine -
word, character, and part of speech n-grams
- are deliberately not intended to be proxies
for score. Rather, they are designed to be as
descriptive of the essays as possible, and Light-
Side waits for the scores in the training set to
inject the meaning into those descriptions. This
makes the engine a more general purpose tool,
but means that the k-means center/border se-
lection strategy is not a good match. However,
there are engines which attempt to generate
features from the essays that are proxies for
score, and for them the k-means center/border
selection strategy should work much better.
This would also explain why Lughofer (2012)
had more success with the algorithm than we
did in this paper.

Finally, even though active learning via con-
fidence worked well on Prompt 6, it is known
that active learning strategies work better when
they are able to select one new response at a
time, rather than select them in batches as was
done in this experiment (Settles, 2010). When
selecting in batches, they tend to identify a
group of very similar responses as the ones
for which they need more information, slow-
ing down the potential accuracy growth. Fur-
ther work should include using MMD as an
add-on to active learning in batches to force a
spread of new responses with each iteration.
On the other hand, active learning by commit-
tee showed little improvement over random
selection. This may be due to the way that we
let the second model contribute to the selec-
tion strategy without contributing to the pre-
dictions. Perhaps using an ensemble method to
include the additional information from logis-
tic regression would have aided this selection
strategy’s performance.
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(a) Prompt 3 (b) Prompt 5

(c) Prompt 6

Figure 2: Random selection vs. Stratified selection on length. QWK Score is quadratic weighted kappa for a training
set selected with the given method, averaged over 15 trials.
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(a) Prompt 3 (b) Prompt 5

(c) Prompt 6

Figure 3: Random selection vs. K-means center/border selection. QWK Score is quadratic weighted kappa for a training
set selected with the given method, averaged over 15 trials.
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(a) Prompt 3 (b) Prompt 5

(c) Prompt 6

Figure 4: Random selection vs. MMD Selection with two distance metrics. QWK Score is quadratic weighted kappa
for a training set selected with the given method, averaged over 15 trials.
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(a) Prompt 3 (b) Prompt 5

(c) Prompt 6

Figure 5: Random selection vs. Active learning with two strategies. QWK Score is quadratic weighted kappa for a
training set selected with the given method, averaged over 15 trials.
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Notes

1Available at http://www.scoreright.org/asap.aspx
2The engine can be downloaded from http://lightsidelabs.com/what/research/
3The Iris data set is a classic machine learning data set, available at http://archive.ics.uci.edu/ml/datasets/Iris
4There are a few optimizations to this algorithm that enable it to run in a reasonable amount of time, but discussing

those optimizations and proving a bound on running time are beyond the scope of this paper.
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